(That is, y Let the general solution of a second order homogeneous differential equation be y0(x)=C1Y1(x)+C2Y2(x). Instead of the constants C1 and C2 we will consider arbitrary functions C1(x) and C2(x).We will find these functions such that the solution y=C1(x)Y1(x)+C2(x)Y2(x) satisfies the nonhomogeneous equation with … If the general solution y0 of the associated homogeneous equation is known, then the general solution for the nonhomogeneous equation can be found by using the method of variation of constants. Theroem: The general solution of the second order nonhomogeneous linear equation y″ + p(t) y′ + q(t) y = g(t) can be expressed in the form y = y c + Y where Y is any specific function that satisfies the nonhomogeneous equation, and y c = C 1 y 1 + C 2 y 2 is a general solution of the corresponding homogeneous equation y″ + p(t) y′ + q(t) y = 0.